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In the present work there is presented a method for investigating forced 
oscillations and the stability of systems described by linear differ- 
ential equations with periodic coefficiehts. The method is based on the 
reduction of the problem to the solution of a Fredholm integral equation 
of the second kind. 

1. Qerivation of an auxiliary formula. Let us consider the 
system of differential equations 

xk = fi bka&x i- Fk(t) (k=1,...,n) (1.1) 

where the b,, are constants and the Fk(t) are given fun&ions of time 

such that 

Fk(t) = Fk(t -f- T) (1.2) 

‘lhe functions F, can be assumed to be piece-wise continuous. For what 

follows it is sufficient to assume that the characteristic equation 

D (h) = I\bka - h&i, ( = 0 (a,, is Kronecker's symbolj(1.3) 

does not have roots X = APC (p = 1, . . . . n) which are equal 

where s is zero or any integer. 

It is required to find a periodic solution of period T of the system 

418 



Oscillations and stability of quasi-harronic notions 419 

(1.1). This problem has been studied in detail in Ill. Below, there is 
given a new form of the solution which is needed in the sequel. Let 

5s = 2, (t) (s=j,...,n) (1.4) 

be the sought periodic solution of (1.1). 

In [ 1 1’ it is shown that 

x8(t) = i; ey * 
p=ll- e- p 

i ~~[~ie-).pTFi(‘)&- 
j=l 0 

(1.5) 
t 

- (I- e-V) \ e--hp’ Fi (z) dtj (s = I, . . . , n) 

0 

where Ajs(X) is the algebraic cofactor of the element of the determinant 
(1.3) whish stands in the jth row and sth column, and it is assumed that 
no two of the numbers X, (p = 1, . . . , n) are equal. 

From (1.5) it follows directly that 

where 

X,(o) = i i Usk(Z)Fk(Z)dZ 
k=l o 

n A,,,. VW) 
Usk (‘1 = 2 D’ (hp) 

e-“P r 

1 _,e-hp~ 

p=1 

(l-6) 

(l-7) 

Let us now suppose that in place of the functions (1.2) we have the 
functions 

FkT (t) = Fk (t + z) 

on the right-hand side of Equation (l.l), where T is a parameter. The 
corresponding periodic solution will be denoted by 

Making use of (1.6), we obtain at once 

x,+ (0) = 5 [ u,k (2) fi-k (2 + r) dz 
h'=lo 

On the other hand, having made a change of 
(Ll), we obtain 

(s = 1, 2,. . . , n) (1.8) 

the variable y = t + T in 
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5s (t + q = xsT (Q 

From this we find that 

X6(?) =x8+(0) (1.9) 

Substituting this expression into (1.8) and replacing r by t, we ob- 

tain an integral representation of the solution (1.4): 

usk (2) Fk (2 + t) dz (s=l, 2, . . . , n) (1.10) 

Next, we note that Equations (1.10) remain valid if in place of Us, 

we use the formulas 

Q)sk (2) = @,k (2 + T)~ %k (2) = Usk (2) for O<Z< T (1.11) 

i.e. one may write 

x,(t) = i i @sk (2) Fk (2 -t t)dz (s=l, 2, . . . , n) (1.12) 
k-1 o 

Through the introduction of a new variable, Expression (1.12) can be 

transformed into the form 

n t+T 

Xs (t) = x \ yP,k(t -Y) Fk(‘dd!/ (s=l, 2,. . . , n) (1.13) 
k=l t 

where 
ysk (2) = @Sk (- 2) (1.14) 

'Ihe Fourier expansion of the function Ysk has the form 

Formula (1.15) follows from (1.14) and the equation 

T 

f 5 
n A,, (h,) 

usk (z) e-+mZdZ = f 2 
1 1 As, (--%I) ---= -- 

D’ @,) A, + +k T D (--‘I’m) 
0 P=l 

(1.15) 

Noting, furthermore, that in accordance with (1.15) the function UJsk 

(t - r) is a periodic function of period T in each of its arguments, and 
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taking into account a known property of the integral of a periodic func- 
tion, one may consider the limits of integration in (1.13) as constants 
equal to 0 and T, i.e. 

n T 

zs (t) = 2 \ y~,r (t’- y) F/t (y) d!i 
X=1 ,, 

(1.18) 

We also note some other properties of the function Ys,. From (1.14) 
and (1.17) we obtain 

Y& (2) = U,k(T - 2) = fj % :h”9’ 

APL 

eh iT for o<z<T (1.17) 
P=l 

P -1 

'lhe following relation also holds: 

n A,, (h,) 
Y& (0) = ; 2 D, (hp) coth$ 

P=l 

(1.18) 

This follows from the property of Fourier series 

One can show also that the function Ys,(t -.r) is continuous in the 
square 

O<r<T, o<t<T 

if k fl s, while the functions Ys, have discontinuities equal to 1 along 
the diagonal t =.r. 

All this was considered under the assumption that Equation (1.3) does 
not have multiple roots. It is, however, not difficult to show that 
Formulas (1.16) and (1.15) are valid without this assumption. 

2. Forced oscillations of a quasi-harmonic system. We shall 
consider the system of differential equations 

xk = ; h&a + /J i mka (t) Xa + Fk (1) (k = 1, . . . , n) f2.1) 
CC=1 a=1 

where the bkcr are the same as in (l.l), n,,(t) and Fk(t) are given func- 
tions- of time of period T, and p is some parameter. 

We shall seek a periodic solution of the system (2.1) which is of 
period T. Let us suppose that such a solution of (1.4) exists. Then, 
taking into account (1.6), we find that this solution must satisfy the 
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system of Fredholm integral equations of the second kind: 

nTn 

zs(t)=p 2 12 ~sh.@-Y) mka (Y) 5, (Y> dy + i lYsk (t - Y) Fk (?I) dY 

k=lO a=1 0 

(s = 1, . . . , n) (2.2) 

Making use of a well-known procedure for the reduction of a system of 

integral equations to a single integral equation, and taking into account 

the periodicity of the functions occurring under the integral sign, we 

reduce the system of equations (2.2) to one equation: 

x (t) = x (t + nq, x (t) = 2s (t) when (s-l)T<t<sT 
(2.3) 

F(t)= F(t+nT), F(t) = i i \Ysh.(t - y)Fk(Y)dY 

o k=l 

when(s-1)T <t<sT 

Let us introduce a kernel, defined in the square 

O<t<nT, O<y<nT 

by means of the formulas 

(2.4) 

when 

Kl (t, y) = i Ysk (t - y) mka (y) = Ksm ct7 Y) 

k=l 

(S--)<T<t<sT, (a-l)T <y<a’T (2.5) 

Making use of the introduced notation, we may write the system (2.2) 

as one equation of the form 

X(O=P $W?Y)X(Y)dYiW) (2.6) 
0 

Let us note that the homogeneous equation 

X(~)=P \TK,(t,Y)X(Y)dY 
0 

(2.7) 

will have non-zero solutions if, and only if, the homogeneous system 

corresponding to the system (2.1) has a periodic solution of period T. 

In view of this it is not difficult to show that the known theorems on 

the existence of a periodic solution of the system (2.1), which are 
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given in [2 1, are simple rephrasings of the known theorems of Fredholm 

13 1 applied to Equation (2.6). 

Let us now proceed with the solution of Equation (2.6). In the general 
case 

where R(p, t, y) is the resolvent of the kernel in (2.5). For small 
enough 1 p 1) R(,u, t, y) is a power series in p: 

R (CL&/) = i ktl (t,d cli (2.9) 
i=o 

where K, are the iterated kernels evaluated by the recurrence formula 

&+1 (Q/) = iTkl (r, 2) ki (2, y).dz (2.10) 

0. 

One can show that the sequence of operations associated with the re- 
presentation of the series (2.9) and of the solution (2.8) is entirely 
equivalent to the determination of the periodic solution of the system 
(2.1) in the “non-resonance case” [ 2 ] by the method of a small para- 
meter. From the theory of Fredholm’s equation it is known that the 
series (2.9) converges for all ,u such that 

(2.11) 

where ,u,, is the smallest (in absolute value) p for which the homogeneous 
equation (2.7) has a non-zero solution, and that the series diverges 
when Ii I > I p,, 1 1 On the other hand, from what was said above, it follows 
that /.L,, is the smallest (in absolute value) value of the parameter for 
which the homogeneous system corresponding to (2.1) will have a periodic 
solution. From this it follows directly that if (,&I .> I,&,, I it is im- 
possible to construct a periodic solution of the system (2.1) by the 
method of a small parameter. For many problems it is possible to estimate 
pa and to have a method for constructing forced oscillations for arbi- 
trary values of the parameter. lhese results can be obtained by applying 
in the solution of Equation (2.6) Fredholm’s method which gives the solu- 
tion for arbitrary values of the parameter. In the general case, the re- 
solvent is a meromorphic function of the parameter p: 

Co (-1l)n 
R(p,t,y)= “f’i:;“’ = i g~~An(t,?/)/ 2 nl p” An C&W 

n=o n=o 
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From this it follows that in the general case 
of the system (2.1) is a meromorphic function of 
sion (2.9) is the Taylor series expansion of the 
fore, the number of pa can be determined as the smallest (in absolute 
value) root of the equation 

the periodic solution 
the parameter. Expres- 
function (2.12). lhere- 

For practical evaluations of the coefficients entering in the numer- 

ator and denominator of (2.12), one can use the recurrence formulas 14 1 

An(t,y)= K,(Q)--n ~&(t,~)L&,y)~~ 
0 (2.13) 

?lT 

A n+1 = 
s 

An (t, t) dt, A, (6 y) = KI (6 ?h A, = 1 

0 

It is not difficult to establish that the coefficient A,(t, y) is a 
linear combination of the iterated kernels K,(t, y), . . . . K,(t, y). For 
their practical computation one can use the following procedure. 

We introduce the matrix IIK, (t, y) 11 which consists of the functions 
Ks,(t, y). We shall evaluate the iterated matrices by means of the 
formula 

(2.14) 

‘lbe .corresponding elements of the matrix II Ki (t, y) II will be denoted 

by K*,‘(t, y). With each matrix II’Ki (t, y) II we associate a scalar func- 
tion of two arguments defined in the square (2.4) by the formula 

Ki(t,y) := Kf, when (s-l)T(t(sT, 

By direct evaluation one can verify that 
constructed coincides with the ith iterated 
tion of the coefficients An it is necessary 
form 

nT 
ai :.z 

s 
Ki(t, t)dt 

0 

(a-l)T(y<al’ (2.25) 

the function Ki(t, y) thus 
kernel (2.10). In the evalua- 
to evaluate integrals of the 

(2.16) 

Taking into account (2.15) and the periodicity of all iterated kernels 
in each of their arguments, we find that 



Oscillations and stability of quasi-harmonic systcrs 425 

One can also construct the solution of Equation (2.6) in a different 
order by makin, w use of known formulas for the coefficients of Fredholm 

141 series. 

As an example, let us consider the case of system (2.1): 

Making use of (2.2) we obtain 

2, (t) 1: p i Y, (t - El) f (9) 5 (y) dy --t- i i ysk(t - ?/) Fk (9) 
;, k-1 ;, 

where 

m=- k=l 

%I (‘--!I) __l f i ‘1, (4,) eJI”Lv -Id 

m_-._m *~~nJ 

Hence, making use of the expression a from (2.181, we obtain 

Tn n 

Utilizing the known formulas (2.131, we shall construct the resolvent 
R(t, y) of the kernel 
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(2.20) 

After evaluation with an accuracy of up to p3, we obtain 

(2.21) 

A1 = j,, ; ?!!?k!- 
k=_-co D (*k) 

etc. 

Everything that has been said in this section can be extended.directly 
to the case of finding almost periodic solutions of the system (2.1) if 
the functions Fk(t) have the form 

Fk (t) = eivt ql, (t) 

where the functions #a,(t) are of period T, and v is a real number. As is 

known[21, if in the-case considered 
solution, then it will be of the form 

there exists an almost periodic 

x8 (t) = ei% (t) (s = 1, 2, . ., n) 

where x,(t) is of period T. Hence, if one introduces new unknowns 

y, = z8e-iyf 

then the system (2.1) will take on the form 

and the problem will have been reduced to finding periodic solutions of 
period T of the system (2.2). 

3. Stability of a quasi-harmonic system. Problems on the in- 
vestigation of the parametric resonance, of the stability of periodic 
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motions, and other problems lead to the necessity of examining the pro- 
perties of homogeneous systems of linear differential equations with 
periodic coefficients. Let us consider the homogeneous system which cor- 
responds to (3.1): 

71 

2, = 2 bkaxa _t p (k =: 1, 2, .( r1) (3.1) 
a=1 a=1 

In accordance with the theory of 
tions of the form 

Zd (t) = ehi’ fis(t) 

Floquet [ 2 1, we shall look for solu- 

(s = i, 2, . ., M) (2. L’ 

where the fis(t) are periodic functions of period T. E3y making the sub- 
stitution 

% (l) = @YS (t) 

we obtain the system 
n 

gk = 2 bka& - hf’kc& t p i mka (t) $a (3.3) 
a=1 W=l 

‘Ibe characteristic exponents Xi have to be determined from the condi- 
tion that for A = Xi the system (3.3) will have a periodic solution of 
period T. But if there is no such solution, then in view of what has 
been said above the system of integral equations 

(3.4) 

where 

(3.5) 

will have a non-trivial solution. 

Just as above, the system (3.4) can be reduced to a single integral 
equation with a kernel defined in the square (2.4) and depending on the 
parameter X. Then, a necessary and sufficient condition for the exist- 
ence of a periodic solution of that equation will be the vanishing of 
the Fredholm determinant, which in the given case is a 

A (hi, p) = 0 

Equation (3.6) can be used for the determination of 

function of X: 

(3.6) 

the characteristic 
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exponents, and also for the separation of the regions of stability in 
the space of the parameters. In addition to the ways indicated in the 
preceding section for the evaluation of A(h, ~1, one can utilize the 
relation 

(3.7) 

E!y substituting on the right-hand side of (3.7) for A(p) an infinite 
series, and taking into account (2.9) and (2.161, we obtain 

Hence, equating coefficients of equal powers of p, we determine 
successively the coefficients Ai: 

A, = a,, A2 = a,” - a,, A, =- aIs - 3a1aa + 2a, etc. (3.8) 

where , in accordance with (3.51, the quantity ai is a function of X. If 
one looks for a solution of the system (3.3) or (3.4) in the form of a 
trigonometric series 

Go 

then one can determine the coefficients Ui, by means of an infinite 
system of linear equations. The determinant of this system which is a 
function of X and p is called Hill’s determinant of the system (3.4). 

One can show that the expansion of the determinant in powers of p co- 
incides with the expression for A(h, ~1, where the coefficients hi(X) 
are determined in accordance with (3.8). In other words, Hill’s deter- 
minant is the denominatbr of the resolvent kernel of the system (3.4). 
It should be noted that the choice of the constant matrix 11 B 11 , con- 
structed from the numbers bkat is essentially arbitrary and corresponds 
to various choices of the parameter. In particular, one may select for 
the matrix \I B 11 in (3.3) the matrix AE (E is the unit matrix). Iben 
the corresponding system of integral equations will take on the form 

where 
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(3.10) 

By combining the terms which are proportional to X with the terms con- 
taining variable coefficients, one can obtain the following system of 
integral equations: 

By taking the integral equations in the form (3.11), we obtain the 
expansion of Hill’s determinant in powers of h, and analogously to the 
cases (3.4) and (3.9), the coefficient Ai will be the sum of 
fractional functions of X. The question on the choice of the matrix llBl[ 
for the best convergence of the corresponding series will be the topic 
of a separate discussion. 

As an example, 
to (2.18) and the 
Making use of the 

03 co 

let us consider the homogeneous system corresponding 
homogeneous integral equation with the kernel (2.20). 
formulas derived above, we obtain 

(3.12) 

where the fi are the Fourier coefficients of the function f(t), 

Each of the terms in the expansion of A(h, ,u) can be written in finite 
form. 

From the general theory for the equation with the kernel K( t, y) we 
have [ 4 1 

Let us consider the quantity (3.13) as a function of X. 
(2.20), this leads to the consideration of the determinant 

Y (0) . . . Y (1, - In) 
I<,, (A) : det . . . . . . . . . . . . 

, Y(t,- II) . . . v (0) 

nt,, (3.13) 

In view of 

For the sake of simplicity, let us assume that the roots of Equation 
(1.3) are simple, ‘lhen one can show that the function K,,(X) has only 
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simple poles at the points X = X, + rlfrk, p = 1, . . . . n, where k is an 
arbitrary integer. Here, the residue of the function ~~(~) at the point 
h = X, + T& does not depend on k,, and is equal to 

where K nps is the dete~inant obtained from (3.14) in the following way: 

1) Ibe sth column is replaced by a column consisting of ones; 

2) In place of the functions Y(ti - tj) one substitutes the functions 

where the prime indicates that the term corresponding to k = 0 has been 
omitted. 

From what has been said, it follows that the expansion of the deter- 
minant K,(A) into simple partial fractions has the form 

I,= 5 5 K,,__kl+rp =f -&&4’k-))T (3.15) 
p=r k=-oo P k .P==I 

Substituting (3.15) into (3-U), we obtain 

Ah(h)= fi coth (h-2’p’T l\kp 

p-1 
(3.16) 

where 

Ako = 

and, hence 

AW, ~1 I- 

T T 
T - 

\ c 2 **** 
f(h) . . . f (tn) K&l, . . ., tn) dt,, dt,, . . . , dt, (3.17) 

0 G 

13.13) 

1 + $oth-yT- A,(p) 
p=1 

j A,(p) --2 5 (-- I)“% Anp ) 
n=1 

A result similar to (3.18) was obtained in 15 1; there, however, the 
quantities A,(p) were expressed in the form of infinite determinants. 

Formulas (3.17) and (3.19) always yield convergent expansions of the 
infinite determinants A,(p) in powers of the parameter, and they thus 
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can serve as effective means for computing the determinants. 
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